
Resource Reservation in Real-Time Operating Systems
- a joint industrial and academic position

Liesbeth Steffens, Philips Research
Gerhard Fohler, Mälardalen University
Giuseppe Lipari, Scuola Sup. S.Anna
Giorgio Buttazzo, Università di Pavia

ARTIST International Collaboration Day 2003
October 12, 2003

2Research

Reasons for resource reservation

• Temporal protection for system robustness

• Independent design, analysis, and validation of
real-time subsystems

• Re-use of legacy applications

• Quality of Service (QoS)

• Hybrid open systems

3Research

Application domains

• Aerospace

• Multi-media

• Real-time control systems

4Research

Operating system trends

General purpose OS

Real-time OS

Open
Multiple applications
Memory protection
Multiple units of failure

Temporally predictable
Small system overhead

Closed
Single application

No memory protection
Single unit of failure

Temporally unpredictable
Large system overhead

Priority schedulingTimesharing

5Research

2 Approaches

Approach 2
(RT)OS API

processes

timesharing, lean, predictable

Approach 1
priority scheduling, lean, predictable

real-time tasks
OS API
processes

RTOS API

6Research

• Proposition 1 Cluster of threads
– Provide reservations to clusters of threads rather than

individual threads.

• Proposition 5 RTOS API
– Make “classical” RTOS API available to cluster for

local use.

(RT)OS API

processes

reservation framework

7Research

• Proposition 2 Processor and memory
– Provide memory and processor reservations to same

cluster.

CPU

(RT)OS API

processes

resources
memory

reservation framework

8Research

• Proposition 3 Protection
– Make (temporal as well as spatial) protection an

integral aspect of reservations.

CPU

(RT)OS API

processes

real resources
memory

reservation framework

9Research

• Proposition 4 Inter-cluster communication
– Provide primitives for inter-application communication

with predictable temporal characteristics

CPU

(RT)OS API

processes

real resources
memory

Communic. framework

10Research

• Proposition 16 Multiple resources
– Provide resource partitioning (in space and/or time)

and associated protection for clusters as a unified
strategy for all resources in a multi-resource
environment.

resources

reservation framework

11Research

Proposition 8
Local scheduling

Proposition 5
Local RTOS API

• Proposition 8 Local scheduling
– Allow clusters to do their own local scheduling

both

12Research

• Proposition 6 Granularity
– Provide means for specifying allocation granularity in

the reservation specification.

time passed

tim
e

re
ce

iv
ed granularity

13Research

• Proposition 7 Temporal Constraints
– Allow reservation contracts to specify customised

temporal constraints, e.g. earliest start time (a) latest
completion time (b).

time passed

tim
e

re
ce

iv
ed

temporal constraint

a b

14Research

QoS practice

15000

17000

19000

21000

23000

25000

27000

29000

MPEG decoding of DVD stream

“worst-case” load
structural load
running average
temporal load

microseconds

15Research

CE application for QoS experiments

DV

mpeg1enc.

QCIF

pip : scalable

disk : non-scalable

SD

main: scalable

audio

mpeg
DVD

mixer :
non-scalable

demux

audio
dec.

mpeg2
dec.

sharp
enhan. mixer

scaler

hw
scaler

mpeg1
enc.

16Research

QoS practice - Dynamic control

• Proposition 10 Resource monitoring
– The RTOS provides primitives for monitoring

resource allocation and usage.

• Proposition 13 Renegotiable reservation
– Allow renegotiation of reservation (or service)

contracts.

17Research

QoS practice – QoS-aware specifications

• Proposition 11 Spare time
– Provide means to specify use of spare time in

reservation contracts.

• Proposition 12 QoS tolerance
– Allow reservation contracts for temporal resources to

provide ranges instead of fixed parameters.

18Research

Overhead

• Proposition 18 Granularity Overhead
– Provide measures for weighing allocation granularity

against the cost of context switching and cache
flushing.

• Proposition 20 System overhead
– Take system overhead into account when

dimensioning a reservation (in the analysis phase).
• Proposition 21 Interrupt handlers

– Account the cost of interrupt handling and RTOS
services to the applications that effectively use them.

19Research

Research recommendations

• Proposition 9 Adaptive applications
– Investigate adaptive real-time applications.

• Proposition 17 Multiple resources
– Investigate resource partitioning (in space and/or

time) and associated protection as a unified strategy
for all resources in a multi-resource environment.

• Proposition 19 Cache issues
– Investigate cache issues in the context of sharing

the memory access path.

20Research

• Our goal is to trigger a broad discussion
between academic and industrial worlds
on the steps that should be taken toward a
new standard in real-time operating
systems.

• We encourage scientist, practitioners and
operating system’s designers to join the
discussion with a critical frame of mind,
by reporting experiences, problems and
suggestions.

